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Ammonia is an essential nutrient for global food production brought to farmers by a well-established supply chain. This
article introduces a supply chain optimization framework which incorporates new renewable ammonia plants into the
conventional ammonia supply chain. Both economic and environmental objectives are considered. The framework is
then applied to two separate case studies analyzing the supply chains of Minnesota and Iowa, respectively. The base
case results present an expected trade-off between cost, which favors purchasing ammonia from conventional plants,
and emissions, which favor building distributed renewable ammonia plants. Further analysis of this trade-off shows that
a carbon tax above $25/t will reduce emissions in the optimal supply chain through building large renewable plants.
The importance of scale is emphasized through a Monte Carlo sensitivity analysis, as the largest scale renewable plants
are selected most often in the optimal supply chain. VC 2017 American Institute of Chemical Engineers AIChE J, 63:

4390–4402, 2017
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Introduction

Ammonia is one of the most essential chemicals existing

today. Without it, there would be no way to ensure the nitro-

gen levels required to feed the growing human population.

Anhydrous ammonia, a chemical which is 82% nitrogen, is

often directly injected into the ground through a stake for use

as fertilizer. Ammonia also has many other uses, for example

as a precursor to nitrogenous commodity chemicals, as a

chemical-based storage of energy,1 as a way to store hydrogen

as a liquid at reasonable temperatures and pressures,2 and as a

liquid fuel.3 Clearly, demand for ammonia will only continue

to grow in the future.4

The Haber-Bosch process revolutionized the ammonia

industry on its discovery in the early 20th century. This pro-

cess, however, requires hydrogen as an input. At present, this

hydrogen is typically obtained from fossil fuels, using pro-

cesses such as steam reforming of methane or coal gasifica-

tion.5 This presents two key sustainability issues: first,

ammonia production presents an ever-present and increasing

demand on a finite fossil fuel supply, and second, ammonia

production contributes to global greenhouse gas emissions,

which are believed to be an important factor underlying

anthropogenic climate change. Thus, without the introduction

of new processes, ammonia cannot be produced at the levels

required to supply the growing human population in a sustain-

able manner.
Motivated by these concerns, a first of its kind pilot scale

ammonia plant was recently built at the West Central Research

and Outreach Center at the University of Minnesota. This

plant produces the hydrogen required for ammonia through

wind-powered electrolysis of water. The technology, with a

flowsheet depicted in Figure 1, has been proven at the pilot

scale.6 In general, such wind-powered plants will likely be

built at a smaller scale than their conventional counterparts

which exist at scales as large as 2 million tons per year.7

Although existing ammonia production is highly centralized,

demand for nitrogen fertilizer is distributed all across the

country, as shown in Figure 2.8 This figure shows the acreage

of farms growing corn, one of the highest ammonia demand-

ing crops. Other critical crops requiring high amounts of

ammonia as a source of nitrogen include wheat, barley, oats,

and cotton. As such, it seemingly would make more sense to

produce ammonia at a smaller scale and in a more distributed

fashion to better match supply and demand.
In theory, any renewable energy source could be used to

power this new renewable ammonia production process. How-

ever, Figure 3 can shed some light on why wind is the ideal

This contribution was identified by Sipho Ndlela (Owens Corning) as the Best
Presentation in the session “Distributed Chemical and Energy Processes for Sus-
tainability” at the 2016 AIChE Annual Meeting in San Francisco.
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renewable source to choose.9 In this figure, it is apparent that
there is significant overlap between the areas with high wind
potential and the areas with high ammonia demand in the
United States. This overlap also occurs in other parts of the
world, such as in Europe where many high potential wind
areas overlap with high wheat producing locations. In addi-
tion, many of the areas with high wind potential are located in
rural locales with low population density. As such, this energy
is often referred to as “stranded” energy: energy located too
far away from major population centers to be useful without
incurring substantial transmission costs and losses. Distributed
renewable ammonia production provides a use for this
stranded energy, as it can be used directly onsite to produce
ammonia, a product that is needed in these rural areas contain-
ing a high density of crops requiring anhydrous ammonia or
other nitrogen fertilizer.

This article addresses two key questions concerning new
renewable ammonia plants: Can such a renewable plant be

economically competitive with existing conventional plants,
and if so, at what scale are the plants competitive? To this end,

the remainder of this article proposes a general framework for
analyzing both conventional and renewable plants within the

ammonia supply chain, and is structured as follows. First,

some background is presented that reviews existing research

on sustainable supply chains and summaries the current state

of the ammonia supply chain. Next, the general mathematical

optimization framework is introduced. We then present some

preliminary data that will be used for the analysis of two case

studies, which look at the ammonia supply chains of the states

of Minnesota and Iowa, respectively. The results of these case

studies are discussed in the following section. Finally, some

concluding remarks and avenues for future work are

presented.

Background

Supply chains consist of networks of material and informa-

tion flows between different facility nodes.10 The nodes often

include suppliers, manufacturers, storage and distribution cen-

ters, and consumers, while the flows can occur through many

different means of transportation, including trucks, barges,

ships, planes, trains, and pipelines. Supply chain optimization,

then, involves determining the best configuration of nodes and

flows that will minimize a certain objective. There are many

possible objectives that one could consider, but in the context

of sustainable supply chains, typically a combination of

Figure 1. Process flowsheet for novel renewable
ammonia system built in Morris, MN.

Figure 2. Amount of farmland used for corn production by county in the United States.8

Figure 3. Wind resources in the United States.9
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economic, environmental, and social metrics, the so called
“three pillars” of sustainability, are used.11,12

Supply chain optimization is of critical importance to indus-

try and is particularly useful for new or expanding industries
to understand, for example, how and where additional capacity
integrates with established production. In the following para-

graphs, we briefly review the use of supply chain optimization
applied to several emerging renewable chemical industries.
The most prevalent of these renewable chemical supply chains

involve biofuels and biochemicals. The optimal design of bio-
fuel supply chain networks considering uncertainties in vari-
ous key parameters, such as local demand, market prices, and

process yields, has been analyzed using a Monte Carlo
approach to global sensitivity analysis.13 Other previous work
developed a generic framework for a bioethanol supply chain

and applied this over a nine-state region in the upper mid-
west.14 This work was extended to allow for selection between

multiple biomass processing technologies as well as take into
account existing corn biofuel plants in the analysis.15 The
implementation of distributed biofuel production has been

examined via a novel small scale biodiesel production facility
to satisfy local fuel demands in the greater London region.16

Additional previous research has incorporated a multiobjective

optimization of cellulosic biofuel supply chains, using a life
cycle analysis that simultaneously considered economic, envi-
ronmental, and social objectives.17 This work was extended to

analyze bioelectricity, instead of biofuel, using a similar multi-
objective optimization with life cycle analysis approach.18 A
biofuel supply chain which incorporates existing petroleum

infrastructure has also been previously studied, showing that
incorporating existing petroleum production facilities and
pipelines into the biofuel supply chain can result in a reduction

of cost.19

Biofuels are not the only renewable chemical considered in
supply chain optimization. Hydrogen supply chains consider-

ing both environmental and economic objectives have been
investigated, which assume vehicle end use and different pro-
duction, storage, and transportation technologies.20 The sugar

supply chain has also been considered in addition to bioetha-
nol, as both are potential products of sugarcane.21 A large
scale carbon dioxide supply chain has been proposed to ana-

lyze carbon capture, storage, and sequestration and identify
how best to reduce carbon emissions and utilize carbon diox-
ide for profits.22 Ammonia supply chains, which we consider

in this work, have received little attention, in large part
because conventional ammonia production is a well-
established technology. One study considered ammonia as a

potential future energy carrier by taking into account the entire
ammonia supply chain; however, this study focused on tech-

noeconomic analysis rather than supply chain optimization.23

An additional study considered ammonia as part of a supply
chain optimization of a large-scale petrochemical complex,

most of which is used as a precursor to urea production.24

In this work, we seek to develop a supply chain optimiza-
tion model which analyzes an ammonia supply chain consider-
ing both existing conventional production and new production

with renewably generated hydrogen (“renewable production”)
at candidate locations with existing wind capacity. In this
sense, supply chain optimization is used here as a tool to pro-

vide a complete comparison of the economic and environmen-
tal costs of conventional vs. renewable ammonia production.
The traditional ammonia supply chain consists of centralized

conventional plants where ammonia is produced at large

quantities, transported, typically by rail or pipeline, to local

distribution centers, and then further transported by truck to

local consumers.25 This work considers the possibility of

introducing local renewable ammonia plants into the tradi-

tional supply chain. Because these plants are being built

locally, they can bypass the distribution centers and ship

directly to the consumer, using either onsite storage or assum-

ing the end user has sufficient storage. The remainder of this

article develops and uses an optimization formulation to com-

pare renewable and conventional ammonia production within

the supply chain.

Problem Formulation

In this section, an optimization framework is developed that

considers the existing ammonia supply chain and decides if

and where to build renewable plants among candidate location

sites, as well as how to transport ammonia through the supply

chain. The formulation uses steady-state mass balances thr-

oughout the supply chain; in practice, this would be accom-

plished through adequate storage at production, distribution,

and end use nodes. Ammonia can be purchased from existing

conventional plants and then transported to one of the ammo-

nia distribution centers. The total ammonia purchased from a

conventional site may not exceed its maximum allowable

value np

XD

d51

yp;d � np 8p (1)

where yp;d is ammonia shipped from a conventional plant p to

a distribution center d. From the distribution centers, ammonia

is then further transported to local demand sites. At each distri-

bution site, there is a mass balance for ammonia: distribution

centers cannot ship out more ammonia than they receive from

conventional plants

XP

p51

yp;d2
XM

m51

yd;m � 0 8d (2)

where yd;m is the amount of ammonia shipped from a distribu-

tion center d to a final demand site m. Local ammonia

demands can also be met by building a new renewable plant.

If this occurs, the plant capacity built (xr) may not exceed its

maximum allowable value nr

xr � nr 8r (3)

As the renewable plant candidate sites are distributed and

local, there is no need to transport this renewable ammonia to

a distribution center; instead, it may be transported directly to

the demand sites. Again, an ammonia mass balance must hold

at each renewable plant, as the plant cannot ship out more

ammonia than it produces

xr2
XM

m51

yr;m � 0 8r (4)

where yr;m is the amount of ammonia shipped from a renew-

able site r to a final demand site m. Regardless of whether

renewably or conventionally produced ammonia is used to

satisfy local demand, this demand (dm) must be satisfied at

every demand site in the supply chain
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XD

d51

yd;m1
XR

r51

yr;m � dm 8m (5)

Lastly, all decision variables must be nonnegative, as back-
wards flows are not allowed in the supply chain, and it makes
no physical sense to built a plant with negative capacity

x; y � 0 8d;m; p; r (6)

Equations 1–6 provide physical constraints to the supply chain
optimization.

To complete the optimization framework, an objective func-
tion is required. It is important for sustainable supply chains to
consider both economic and environmental concerns. Using
multiobjective optimization techniques, such as the epsilon con-
straint method,26 objectives relating to both can be accounted
for. First, an economic objective can be considered by examin-
ing the annualized cost of operating the supply chain

cost5
XR

r51

XU

u51

qu

h
xr

v

� �cu
� �

1rxr

 !
1
XR

r51

XM

m51

sr;myr;m

1
XP

p51

XD

d51

ðsp;d1apÞyp;d1
XD

d51

XM

m51

sd;myd;m

(7)

where qu is the reference capital cost of a unit in the

renewable plant, cu is the capacity exponent of that unit, h
is the scaled plant lifetime, using a 20-year NPV formula-

tion with a 7% discount rate, v is the reference renewable

plant capacity corresponding to the reference capital cost, r
is the operating cost factor for a new renewable plant, si;j

are transportation costs of moving ammonia from i to j,
and ap is the cost of purchasing ammonia from conven-

tional plant p. This is the overall supply chain cost, which

consists of terms including the annualized capital cost of

building new renewable ammonia plants, the operating

costs of these new renewable plants, the cost of transport-

ing ammonia through the supply chain, and the cost of pur-

chasing ammonia from conventional plants, respectively. It

is important to note here that a nonlinearity is present in

the capital cost term due to economies of scale. The objec-

tive function also considers that the economies of scale

may differ among units within the renewable plant; for

example, electrolyzer units may not scale as well as the

ammonia reactor.
An environmental objective is also considered by account-

ing for the annual amount of carbon dioxide produced from

the ammonia supply chain

Figure 4. Existing ammonia pipelines in the United States.25
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emissions5
XP

p51

XD

d51

ð�p;d1gpÞyp;d1
XD

d51

XM

m51

�d;myd;m

1
XR

r51

XM

m51

�r;myr;m

(8)

where �i;j are the emissions resulting from transporting ammo-

nia from i to j, and gp are the emissions resulting from the

production of ammonia at conventional plant p. These are the

overall supply chain emissions, which consist of terms in-

cluding the emissions resulting from transporting ammonia

throughout the supply chain, as well as from conventional

ammonia production, respectively. The emissions function

assumes that all of the power required for renewable ammonia

production is obtained from either direct or stored wind power,

and as such, renewable ammonia production has no associated

carbon emissions.
With the economic and environmental objectives defined,

the supply chain optimization framework is complete. This

formulation is a nonconvex nonlinear program (NLP) due sim-

ply to the capital cost term, as the capacity exponent cu will

typically take values less than 1 due to economies of scale.

The formulation could in theory be transformed to a mixed

integer linear program (MILP) if only the economic objective

is considered, as the economies of scale would dictate always

building a plant to its maximum capacity if built. However,

the presence of the second, environmental, objective, means

that in some cases the optimization will decide to build new

renewable plants that are smaller than what is allowed to

decrease transportation emissions. The optimization model

can be solved to global optimality for problems with a small

number of variables or tight known variable bounds by, for

example, using the BARON solver.27

Case Study Preliminaries

To demonstrate the utility of the proposed framework, it is

applied to two separate case studies, analyzing the ammonia

supply chains of Minnesota and Iowa, respectively. Note that

the supply chain framework defined in the previous section

allows for system boundaries as large or small as one would

like. The choice of Minnesota and Iowa, is made because even

though they are neighboring states, they have significant dif-

ferences that make looking at each of the respective supply

chains a worthwhile exercise as specified below. First, as

shown in Figure 4, Iowa has more ammonia pipeline connec-

tions than does Minnesota. Because of this, there is also a

greater number of distribution centers in Iowa, as shown in

Figure 5. Figure 5 also shows agricultural ammonia demand at

a county level for each state. This demand was calculated

using crop planted area data for three major regionally grown

crops: corn and wheat, which have a high demand for ammo-

nia, and soybeans, whose demand is much less.28,29 Reported

data for the average ammonia consumption per area for each

crop was then used to convert this agricultural use to an

ammonia demand.30 Looking at Figure 5, it is apparent that

Iowa has a larger, more geospatially homogeneous demand for

ammonia than Minnesota.
Ammonia can be purchased from any of the existing con-

ventional ammonia plants shown in Figure 67 at a nominal

market price of $717/ton.31 Depending on whether the existing

plant uses coal or natural gas as its source for hydrogen, the

related CO2 emissions from purchasing this ammonia are 3.8

or 1.6 t CO2/t NH3, respectively.32 For each plant, a maximum

Figure 5. Ammonia demand and distribution centers in Minnesota (left) and Iowa (right).28–30

Figure 6. Existing conventional ammonia plants con-
sidered in this study, with Minnesota and
Iowa highlighted in gray.7
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amount of ammonia allowed for purchasing was determined
based on the capacity of each plant scaled down based on how
far away such plant is from the area of interest, since conven-
tional plants would presumably be supplying other areas and
demands as well. Ammonia purchased from the conventional
plants can be supplied to existing distribution by either pipe-
line, rail, or truck. Table 1 gives the maximum purchase
parameters and transport connections for each conventional
ammonia plant. Note that the maximum purchases given are
for Minnesota, and Iowa maximum purchases are assumed to
be 50% higher due to its larger demand. Truck transport is not
included in this table, but is the default mode of transport
between conventional plants and distribution centers if pipe-
line and rail transport are unavailable. Ammonia is then trans-
ported by truck from either distribution centers or new
renewable plants to local demand sites, which in this case
study are assumed to be cities located near the centers of each
county with ammonia demand, as shown in Figure 5.

Truck transportation costs and emissions were deter-
mined assuming the use of diesel fuel with fuel economy of
2.13 km/L, a fuel cost of $0.93/L, fuel emissions of 2.68 kg
CO2/L, a single tanker capacity of 17 t,25 and a truck driver
wage of $22/h.33 Driving distances and times were found using
the Google Maps distance matrix API.34 Pipe transportation
costs were determined assuming a piping energy requirement
of 185 kJ/kg,25 an electricity cost of $0.08/kWh, and emissions
of 0.98 kg CO2/kWh, the average from coal power plants.35

An additional distance-based pipeline fee is added based on
existing data adjusted for inflation.25 Lastly, rail transport
costs and emissions use the same fuel data as for truck trans-
port, with a fuel economy of 204 km-t/L and an additional flat
fee based on existing data adjusted for inflation.25

The candidate locations for new renewable ammonia plants
are shown in Figure 7. These candidate sites are cities with
nearby existing wind capacity:36 this case study assumes that a
new renewable plant would partner with this existing capacity
rather than build new wind turbines, to avoid introducing

additional capital costs in the economic analysis. It is further

assumed that a maximum of 37% of the rated wind capacity

could be used for the new ammonia plant, consistent with typi-

cal capacity factors for wind power, at a conversion rate of

1191 t/y/MW, a value obtained from runs of the pilot plant.

For example, these parameters imply that a candidate location

with a 15MW wind farm will be able to support a renewable

plant no larger than 6610 t/y. It is important to note that for

model generality, this capacity factor was assumed constant

for all locations, although in reality it will be a function of

both turbine design and location. From Figure 7, it is evident

that Iowa also has a larger average maximum renewable plant

size in comparison to Minnesota. Comparing Figures 5 and 7,

it is easy to see the overlap between locations of high ammo-

nia demand and high wind potential, presenting the possibility

of ammonia production at a local scale rather than importing

the ammonia from out of state.
Economic parameters for the new renewable plants are

obtained from the pilot plant data obtained from the WCROC

facility and are summarized below. From this facility, a total

capital cost of $2.6MM is obtained at a reference capacity of

26.28 t/y. Of this capital cost, 57% is from the ammonia reac-

tor and related components, 28% is from the electrolyzer and

related components, and the remaining 15% is from the air

separation unit and related components. It is further assumed

that a larger, more cost efficient electrolyzer is used in the new

renewable plants in comparison to the pilot plant, giving a

25% cost reduction for this unit due to electrolyzer economies

of scale for sizes up to 2MW. Beyond this scale-up, however,

electrolyzer economies of scale are not as favorable as the rest

of the plant,37 and as such capacity exponents of 0.67, 0.67,

and 0.85 are assumed for the ammonia, nitrogen, and hydro-

gen units, respectively. This capital cost is annualized using an

NPV formulation that assumes a 20-year plant lifetime with

7% annual discount rate. In addition, an operating cost for

operating the new renewable plant of $308/t is applied that

Table 1. Maximum Purchases and Supply Chain Connectivity for Each Conventional Ammonia Plant Considered

Conventional Pipeline Maximum
Plant Rail Connections Connections Purchase (t/y)

Beulah, ND Glenwood, Garner, N/A 150,000
Spencer, Sloan

Regina, SK Glenwood, Garner, N/A 50,000
Spencer, Sloan

Medicine Hat, AB Glenwood, Garner, N/A 300,000
Spencer, Sloan

Creston, IA N/A Mankato, Garner 10,000
Spencer, Ft. Madison
Washington,
Marshalltown

Coffeyville, KS N/A Mankato, Sloan 100,000
Verdigris, OK N/A Mankato, Sloan 120,000
Woodward, OK N/A Mankato, Sloan 100,000
Yazoo City, MS Rosemount, Ft. N/A 50,000

Madison, Washington,
Marshalltown

Beaumont, TX Rosemount, Ft. N/A 30,000
Madison, Washington,
Marshalltown

Geismar, LA Rosemount Garner, Spencer, Ft. 40,000
Madison, Washington
Marshalltown

Lima, OH Rosemount, N/A 40,000
Washington,
Marshalltown
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takes into account energy costs ($294/t), labor, and mainte-
nance ($14/t).

Results and Discussion

Base case results

For both the Iowa and Minnesota supply chains, the optimi-
zation model was solved using the BARON optimizer in
GAMS. For the Minnesota supply chain, the model consisted
of 2,522 variables and 152 constraints, while for the Iowa sup-

ply chain, the model consisted of 3,262 variables and 170 con-
straints. The model returned the economic optimal solution in
4.67 s for the Iowa supply chain and 2.64 s for the Minnesota
supply chain. The low CPU-times can be attributed to the fact
that the problem is mostly linear except for one concave objec-

tive, and that upper and lower bounds on all variables are
known due to the mass balances within the supply chain. The
model solved the problem to a 1029 relative optimality gap
using an Intel Core i7 3.40 GHz 64 bit processor. A tight opti-

mality tolerance is used to ensure that all variables which
should be zero are not small non-zero values in the solution;
the fast solution times confirmed that this choice did not have
a major effect on performance.

For the base case parameters, the annual cost of providing

ammonia for the Minnesota supply chain in the economically
optimal case was $426 MM/y, or an average consumer cost of
$825/t NH3. For the Iowa supply chain, the optimal annualized
cost was $600 MM/y, or an average consumer cost of $827/t
NH3. The resulting supply chain emissions in the cost optimal

case were 1.38�106 t/y and 1.70�106 t/y for Minnesota and
Iowa, respectively. In both cases, the economic base case
decided to build no new ammonia plants, and instead pur-
chased all ammonia from conventional plants. The slightly

higher average consumer costs in the Iowa supply chain are
due to its higher demand, which needed to be met by purchas-
ing ammonia from plants that were located further away from
Iowa, incurring slightly higher transportation costs.

Figure 8 shows the base case economic optimal supply

chains for Minnesota and Iowa. In both states, all of the avail-
able distribution centers are used to supply the state’s ammo-
nia demand. Although the Minnesota supply chain requires
more in-state transportation than Iowa due to its fewer distri-
bution centers, transportation costs take up about the same

amount of the total costs, about 13%, for both states. This is
because Iowa sees additional transportation costs due to

requiring ammonia from further away conventional plants to
meet its larger demand. While both states choose to purchase
ammonia from the midwestern conventional plants in Iowa,
North Dakota, Kansas, Oklahoma, and Ohio, the Iowa supply
chain purchases extra ammonia from the southern plants in
Louisiana and Mississippi, while the Minnesota supply chain
instead uses the Canadian plants in Alberta and Saskatchewan.

The base case was further analyzed by applying the environ-
mental objective function. For Minnesota, the environmentally
optimal solution gave a supply chain cost of $620 MM/y, 46%
more than the economically optimal cost, and emissions of

Figure 7. Candidate locations for new renewable ammonia plants considered in the study.36

Figure 8. Base case economic optimal supply chains
for Minnesota (top) and Iowa (bottom).
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6740 t/y. Averaged over the total ammonia demand, this equa-

tes to a consumer cost of $1200/t NH3 with related emissions

of 0.0131 t CO2/t NH3. For Iowa, the environmentally optimal

solution gave a supply chain cost of $860 MM/y, 43% more

than the economically optimal cost, and emissions of 4490 t/y.

Averaged over the total ammonia demand, this equates to a

consumer cost of $1190/t NH3 with related emissions of

0.00619 t CO2/t NH3. In both cases, the environmentally opti-

mal solution returned a supply chain that obtained ammonia

only from building new renewable plants, and these plants

were highly distributed to minimize transportation, which is

the only cause of emissions in this case. Additionally, the

resulting emissions were three orders of magnitude lower in

the environmentally optimal solution than in the economically

optimal solution, implying that emissions from hydrogen pro-

duction are the key source of emissions in the ammonia supply

chain. As Iowa has more candidate locations that are close to

the counties with high ammonia demand, the optimal emis-

sions for Iowa are less than those of Minnesota. However, for

both states, the emissions in the environmentally optimal case

are multiple orders of magnitude smaller than the emissions in

the economically optimal case. A pictorial representation of

the supply chain solution for the environmentally optimal case

is omitted here for brevity.
Using the results obtained from the purely economically or

environmentally optimal solutions, a Pareto front comparing

the trade-offs of these two objectives was obtained using the

epsilon constraint method. The results are shown in Figure 9.

Note that initially, the Pareto front for the Iowa supply chain

drops at a steeper rate than that of the Minnesota supply chain.

This indicates that renewable plants are closer to being cost

competitive in Iowa than they are in Minnesota, a result of

Iowa having larger existing wind plants, and as such, larger

capacity candidate renewable plant sites. In both cases, the

Pareto front (from left to right on Figure 9) first sees a region

where a large amount of emissions reduction is achieved with

relatively little cost increase, indicating a switch from purchas-

ing ammonia from conventional sites to building new renew-

able plants. However, at higher costs, only a very small

emissions reduction is occurring for a larger cost increase and

the Pareto front is essentially flat. At this point, no more

ammonia is being purchased from conventional plants, and the

emission reductions seen are a result of building smaller scale

renewable plants in a distributed fashion, reducing emissions

from in-state transportation. Similar arguments account for the

non-smooth nature of the Pareto front; jumps in cost occur

when emissions are reduced by building a new renewable

plant at its maximum capacity, while more gradual cost

changes indicate that emissions are reduced by changing how

ammonia is transported.

Carbon tax sensitivity

Multiobjective optimization showed that starting at the eco-

nomically optimal solution, there is potential for a high

amount of emissions reduction for little additional cost. This

implies that economic incentives, such as a carbon tax, may be

effective in promoting new renewable plants to be present in

the economically optimal solution. This is tested by optimiz-

ing a new function which takes into account the supply chain

costs previously considered, as well as the supply chain

emissions:

new cost5cost1fðemissionsÞ (9)

where f is the value of the carbon tax. Note that analyzing the

carbon tax using this formulation has the practical effect of

combining the two objectives examined in the base case into

a single, weighted objective, with weights dependent on the

value used for f.
The results of this optimization are shown in Figure 10. In

this figure, notice that a carbon tax is immediately effective at

curbing emissions for the Iowa supply chain. However, the

Minnesota optimal supply chain is not affected from a carbon

tax until a value of $25/t. This is indicated by a jump down in

emissions between carbon taxes of $20/t and $25/t, and in gen-

eral, a jump in emissions indicates the optimal solution decid-

ing to replace conventional ammonia with a newly built

renewable ammonia plant at higher carbon tax. Overall, the

carbon tax has a greater impact on the cost of the Minnesota

supply chain, with a cost increase of $83 MM/y, or 19%

occurring from a $100/t carbon tax, compared to only a

$55 MM/y or 9% cost increase in Iowa from the same carbon

tax. Additionally, these results show that a reasonable carbon

tax can be effective at reducing ammonia supply chain emis-

sions and providing incentives to build new renewable ammo-

nia plants: at a carbon tax rate of $35/t, similar to what has

been proposed or implemented in other OECD countries,

emissions are reduced by 76 and 39% in Iowa and Minnesota,

respectively. Again, the reason for these differences is econo-

mies of scale: fewer economic incentives are required to make

the larger candidate plants in Iowa attractive than are neces-

sary to make the smaller candidate plants in Minnesota

attractive.

Ammonia price sensitivity

One of the key parameters in determining the economic fea-

sibility of renewable ammonia is the cost of conventional

Figure 9. Pareto frontiers for supply chain costs vs. emissions for Minnesota (left) and Iowa (right).
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ammonia. Ammonia costs in the upper Midwest can vary
wildly from year to year, with costs ranging from $450/t to
$900/t since 2008.38 Thus, it is instructive to analyze the
effects of ammonia costs on the supply chain optimization. To
perform this analysis, the total annual supply chain costs are
broken into three categories: the costs of purchasing ammonia
from conventional plants, the costs of building and operating
new renewable ammonia plants, and the costs of transporting
ammonia throughout the supply chain. The effects of ammonia
cost on these supply chain costs are shown in Figure 11.

From Figure 11, it is clear that several distinct “regions”
appear in the parameter space as ammonia cost is varied. The
boundaries between these regions are where discontinuities in
the three categories of costs occur. Each of these discontinu-
ities represents a change in the optimal supply chain such that
an additional renewable ammonia plant is built. For example,
the results of the Iowa supply chain indicate that one new
renewable ammonia plant is built at prices of $745/t or higher,
while no new plants are built at prices of $740/t or lower. Note
that as ammonia prices increase and more renewable plants
are selected to be built, the transportation costs also decrease.
This is an indirect result of selecting ammonia sources that are
closer to the final demand sites, instead of purchasing ammo-
nia from far away conventional plants.

Figures 12 and 13 show the supply chain results for the dif-
ferent solution regions for Minnesota and Iowa, respectively.
Note that the results for the region where no renewable plants
are built are the base case results; these results were shown
previously in Figure 8. As keeping transportation at a mini-
mum also minimizes the supply chain costs, new renewable
plants replace the nearest distribution center as the source for
ammonia. For example, when comparing the Minnesota sup-
ply chains with zero and one new ammonia plant built, note
that the distribution center in Rosemount is no longer used

when the new plant is built. In fact, many of the counties that
were receiving ammonia from Rosemount when no plants are
built instead receive ammonia from the newly built renewable
plant in Dexter when ammonia prices are higher and it is
selected to be built.

Monte-Carlo analysis

While the carbon tax and ammonia price are important
parameters affecting the optimal supply chain, they are not the
only parameters which have a large impact. In this section, the
effects of four key parameters, which include both the carbon
tax and ammonia price as well as the electrolyzer scaling
exponent and the conversion factor between available wind
capacity and renewable plant maximum size, are explored in a
Monte Carlo analysis. Such an analysis gives insights on the
robustness of the supply chain with respect to different eco-
nomic and weather conditions which may be present. In partic-
ular, the frequency of building new renewable plants and
purchasing from conventional plants is determined. The distri-
butions used for each the four parameters are as follows: first,
for the ammonia price, a Gaussian distribution is used based
on the mean and standard deviation from the historical data
since 2008.38 The wind power to maximum plant size conver-
sion factor is also varied by a Gaussian distribution with its
mean at the base case value and a standard deviation value of
20% of the mean. For carbon tax, an exponential distribution
is considered with a mean value at a reasonable $20/t tax, and
the most likely value at the status quo of no carbon tax. Lastly,
the electrolyzer capacity exponent varies uniformly from a
lower bound of 0.67, where the unit scales as well as all
others, to an upper bound of 1, where the unit does not scale at
all. For each supply chain, Monte Carlo random sampling
using the given distributions is performed and the optimal sup-
ply chain is found by solving the optimization using the

Figure 10. Effect of a carbon tax on annual cost and emissions of economic optimal supply chain for Minnesota
(left) and Iowa (right).

Figure 11. Effect of ammonia prices on economic optimal supply chain costs for Minnesota (left) and Iowa (right).

4398 DOI 10.1002/aic Published on behalf of the AIChE October 2017 Vol. 63, No. 10 AIChE Journal



randomly generated parameters. This process is repeated 6000
times for each supply chain to adequately explore the parame-
ter space.

The results of the Monte Carlo analysis show that neither
renewable plants nor conventional plants are 100% robust, as
shown in Figure 14. In fact, there exist scenarios where no

renewable plants are used, as well as those where no conven-
tional plants are used. For Iowa, no renewable plants are built
44% of the time while no purchases from conventional plants
are made 9.7% of the time. For Minnesota, the results favor
conventional plants more, as no renewable plants are built
72% of the time while no purchases from conventional plants

Figure 13. Iowa economic optimal supply chain for cases where 1 (top left), 2 (top right), 3 (bottom left), or 4 (bot-
tom right) new renewable plants are built, with renewable plants in italics.

Figure 14. Frequency of conventional (black) and renewable (gray) plants being selected in supply chain during
Monte Carlo analysis for Minnesota (left) and Iowa (right).

Figure 12. Minnesota economic optimal supply chain for cases where 1 (left), 2 (middle), and 3 (right) new renew-
able plants are built, with renewable plants in italics.
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are made only 4.3% of the time. Again, the reason for this is

scale: the largest candidate renewable plant in Iowa, located in

Crystal Lake, is selected the most, 56% of the time. However,

the largest renewable plant in Minnesota, located in Dexter, is

almost 100,000 t/y smaller than the Crystal Lake plant, and as

such is only selected 38% of the time.
The observed distributions of costs and emissions are shown

in Figures 15 and 16, respectively. Emissions are plotted on a

log scale since the results vary over orders of magnitude

depending on how many renewable plants are selected. Inter-

estingly, the average cost seen is higher than the base case

cost for the Minnesota supply chain but lower in the Iowa sup-

ply chain. This is likely a result of the Iowa renewable plants

being more competitive than Minnesota renewable plants. As

such, certain parameter values may result in a new renewable

plant being built in Iowa but not in Minnesota, and thus the

relative cost per ton of ammonia will be lower in Iowa but

higher in Minnesota. This explanation is further supported by

the emissions distributions, as Minnesota had a higher likeli-

hood of a high emission supply chain than Iowa.

Analysis of smaller scale systems

The case study results discussed thus far explore which, if

any, renewable plants should be built given certain economic

and demand parameters. The answers that have been obtained,

not surprisingly, say that the largest scale candidate plants are

the most optimal to build since they have lower capital costs

per unit capacity. However, the idea of distributed ammonia

was introduced with the desire to produce this chemical at a

smaller, more distributed scale to take advantage of the geo-

spatially distributed wind supply and agricultural demand. The

framework developed in the article also allows for analysis of

the reverse question; that is, given a specific size of renewable

plant to build, what economic parameters are required to make
such a plant economically competitive in the supply chain.
This analysis allows us to identify policy or technology targets
that should be met to make smaller scale renewable ammonia
plants economically competitive.

For this analysis, candidate renewable plant capacities were
set to a maximum value of the specific capacity that was being
analyzed. Three economic parameters were then separately
analyzed: the cost of purchasing ammonia from conventional
plants, the cost of a carbon tax, the base case plant capital
cost, and the plant’s capacity exponent. These parameters are
gradually increased (in the case of ammonia cost and carbon
tax), or decreased (in the case of capital cost) until the

Figure 15. Histogram of annual supply chain costs from Monte Carlo analysis for Minnesota (left) and Iowa (right).

Figure 16. Histogram of annual supply chain emissions from Monte Carlo analysis for Minnesota (left) and Iowa
(right).

Figure 17. Required changes in parameters for renew-
able plants of a certain scale to be econom-
ically optimal.
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optimization returns a solution where a renewable plant is
built. This is repeated over various ammonia plant capacities
of interest, including scales as large as 100,000 t/y (ammonia
to provide to 1.84 million acres of corn, or 2% of all US corn
fields) to as small as 3,000 t/y (ammonia to provide to 5500
acres of corn, or about 3–4 large family farms). The results of
this analysis are shown in Figure 17, where only single lines
are shown as the results from Minnesota and Iowa are not dif-
ferent enough to be distinguished on the plot.

The results shown in Figure 17 give good insight of the
issues of building small scale, distributed plants. It is apparent
that, at the scale of 100,000 t/y, renewable ammonia plants are
not that far from being economical. For a plant of this scale to
be competitive, only a 20% increase in ammonia cost, a 22%
decrease in base plant capital costs, a $64/t carbon tax, or
some combination of the three, is required. However, at a
30,000 t/y scale, these metrics become increasingly less
achievable: a 55% increase in ammonia cost, a 43% decrease
in capital costs, or a $218/t carbon tax is required. The results
again show the importance of economies of scale for chemical
plants, as plant economics very quickly become restrictive
when considering smaller scales. However, it is also important
to note that the smallest plants may actually perform slightly
better than this analysis shows since ammonia demand is only
determined at the county level, whereas the smallest plants
would serve a smaller demand and have near zero transporta-
tion costs.

Conclusions

In this article, a novel formulation for ammonia supply
chain optimization was presented that considers both the exist-
ing conventional production technology, as well as a newly
developed renewable production technology. Such a frame-
work allows for meaningful comparison of the two technolo-
gies in their ability to meet existing ammonia demands
considering both economic and environmental objectives. It is
important to note that the framework provided here is generic:
while the studies presented analyze wind-powered renewable
ammonia and agricultural ammonia demand, it is also possible
to use, for example, solar power and consider fuel or chemical
industry demands.

We then applied the developed framework to the ammonia
supply chains in the states of Minnesota and Iowa, respec-
tively. Analyzing these supply chains separately gave insights
on the effects of how the number of distribution centers or
overall demand size affect the supply chain results. Perhaps
unsurprisingly, the key conclusion that was obtained from the
separate analysis was the importance of scale: economies of
scale are essential for renewable plants to be cost-competitive,
and the smaller candidate plants located in Minnesota do not
perform as well as the larger candidate plants in Iowa. How-
ever, the analysis shows that renewable plants have the poten-
tial to be cost-competitive under the right economic
parameters, as the largest possible renewable plant was
selected 71% of the time under a Monte Carlo sensitivity anal-
ysis. This result in itself shows that the new renewable ammo-
nia technology developed is a promising one which holds
potential for growth, improvement, and successful break-
through into the market.

The framework presented here allows for long term plan-
ning of the ammonia market and supply chain. However, one
such potential for improvement of the renewable ammonia
technology involves moving down a level and focusing on the

shorter-term scheduling and control of the system. Because

the renewable ammonia system relies on stochastic renewable

energy to power it, cost savings may be achievable by intelli-

gent scheduling and control of the renewable ammonia sys-

tem. Performing this scheduling optimization and using the

results to better inform the supply chain decision making is a

promising avenue of future research that will be pursued in

future work.
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Notation

Sets

d 2 f1; . . . ;Dg = ammonia distribution center sites
m 2 f1; . . . ;Mg = ammonia consumption sites
p 2 f1; . . . ;Pg = conventional ammonia production sites
m 2 f1; . . . ;Rg = renewable plant candidate sites
u 2 f1; . . . ;Ug = renewable plant operating unit

Parameters

ap = cost of purchasing ammonia from site p ($/t)
cu = capacity exponent for unit u
dm = ammonia demand at site m (t/y)
�i;j = carbon emissions from transporting ammonia from site i to site j (t

CO2/t NH3)
f = carbon tax ($/t CO2)

gp = carbon emissions from producing ammonia at site p (t CO2/t NH3)
h = scaled plant lifetime y

np = maximum purchase of ammonia from conventional site p (t/y)
nr = maximum capacity of new renewable ammonia plant built at site r

(t/y)
qu = reference capital cost of renewable plant unit u ($)
r = annual renewable plant operating cost per capacity ($/t)

si;j = cost of transporting ammonia from site i to site j ($/t)
v = reference renewable plant capacity (t/y)

Decision Variables

xr = new renewable plant capacity built at candidate site r (t/y)
yi;j = ammonia transported from site i to site j (t/y)
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